Optical mapping of repolarization and refractoriness from intact hearts.

نویسندگان

  • I R Efimov
  • D T Huang
  • J M Rendt
  • G Salama
چکیده

BACKGROUND Heterogeneities of repolarization (R) across the myocardium have been invoked to explain most reentrant arrhythmias. The measurement of refractory periods (RPs) has been widely used to assess R, but conventional electrode and extrastimulus mapping techniques have not provided reliable maps of RPs. METHODS AND RESULTS Guinea pig hearts were stained with a voltage-sensitive dye to measure fluorescence (F) action potentials (APs) from 124 sites with a photodiode array. AP duration (APD) was defined as the time between depolarization (dF/dt)max and R time points (ie, the time when AP returns to baseline or some percent thereof). However, R time points are difficult to determine because AP downstrokes are often encumbered by drifting baselines and motion artifacts, which make this definition ambiguous. In optical and microelectrode recordings, the second derivative of AP downstrokes is shown to contain an easily detected, unique local maximum. The correlation between the position of this maximum (d2F/dt2)max and R has been tested during altered AP characteristics induced by changes in cycle length, ischemia, and hypoxia. Under these various modifications of the AP, the time points of (d2F/dt2)max fell at 97.0 +/- 2.1% of recovery to baseline. Extrastimulus techniques applied to (1) isolated myocytes, (2) intact hearts, and (3) mathematical simulations indicated that (d2V/dt2)max coincided with the effective RPs of APs. The coincidence of RPs and (d2V/dt2)max was valid within 5 milliseconds, for resting potentials of -75 to -90 mV and extrastimuli three times threshold voltage. CONCLUSIONS Thus, optical APs and (d2F/dt2)max can be used to map activation, R, and RPs with AP recordings from a single heartbeat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia.

The heterogeneous distribution of ion channels in ventricular muscle gives rise to spatial variations in action potential (AP) duration (APD) and contributes to the repolarization sequence in healthy hearts. It has been proposed that enhanced dispersion of repolarization may underlie arrhythmias in diseases with markedly different causes. We engineered dominant negative transgenic mice that hav...

متن کامل

Calcium-dependent arrhythmias in transgenic mice with heart failure.

Transgenic mice overexpressing the inflammatory cytokine tumor necrosis factor (TNF)-alpha (TNF-alpha mice) in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias on ambulatory telemetry monitoring, and decreased survival compared with nontransgenic littermates. Programmed stimulation i...

متن کامل

Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation.

RATIONALE Sarcoplasmic reticulum (SR) Ca(2+) cycling is key to normal excitation-contraction coupling but may also contribute to pathological cardiac alternans and arrhythmia. OBJECTIVE To measure intra-SR free [Ca(2+)] ([Ca(2+)]SR) changes in intact hearts during alternans and ventricular fibrillation (VF). METHODS AND RESULTS Simultaneous optical mapping of Vm (with RH237) and [Ca(2+)]SR ...

متن کامل

Intracellular calcium handling heterogeneities in intact guinea pig hearts.

Regional heterogeneities of ventricular repolarizing currents and their role in arrhythmogenesis have received much attention; however, relatively little is known regarding heterogeneities of intracellular calcium handling. Because repolarization properties and contractile function are heterogeneous from base to apex of the intact heart, we hypothesize that calcium handling is also heterogeneou...

متن کامل

Pharmacological inhibition of IK 1 by PA‐6 in isolated rat hearts affects ventricular repolarization and refractoriness

The inwardly rectifying potassium current (IK 1) conducted through Kir2.X channels contribute to repolarization of the cardiac action potential and to stabilization of the resting membrane potential in cardiomyocytes. Our aim was to investigate the effect of the recently discovered IK 1 inhibitor PA-6 on action potential repolarization and refractoriness in isolated rat hearts. Transiently tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 1994